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Abstract. A projection is defined such that a second-order Lagrangian density factors through
this projection modulo contact forms if and only if it is parameter invariant. In this way,

a geometric interpretation of the parameter invariance conditions is obtained. The above
projection is then used to prove the strict factorization of the Poge2artan form attached to a
parameter-invariant variational problem thus leading us to state the Hamilton—Cartan formalism,
the complete description of symmetries and regularity for such problems. The case of the
squared curvature Lagrangian in the plane is analysed especially.

1. Introduction

First-order variational problems whose action integral does not change under arbitrary
transformations of the independent variable (@rameter-invariant problemshave a
significant role in pseudo-Riemannian and Finsler geometry as well as in classical and
relativistic mechanics [1, 3, 12, 14, 17, 26, 27]. As is well known, first-order parameter-
invariant Lagrangian densities are defined by Lagrangian functions on the tangent bundle
which are positively homogeneous of first degree, and there is a standard procedure,
coming back from Jacobi and Caréatidory (e.g. see [8, section 8.1.2] and references
therein, or [27]), which allows one to associate a non-parametric Lagrangian to each
first-order parameter-invariant problem. Let us sketch a brief review of this theory: let
m10: JYR, M) — R x M, be the bundle of 1-jets of curves on ardimensional smooth
manifold M. A LagrangianZ: J*(R, M) — R is parameter-invariantif its fundamental
integral is invariant under arbitrary changes of the paramgtgr, 5] — [«, B] of classC?

with ¢'(+) > 0 (see formula (2.1) below when= 1). If we denote by, x, x?) the local
coordinates induced inl‘Ol(U) by a local coordinate systeqU, x’) of the manifoldM;

i.e. x'k(j,la) = (d/d)(x* o 0)(¢), then we can characterize first-order parameter-invariant
Lagrangians as the function& J1(R, M) — R verifying (3£/3t) = 0, x{ (3L /dx') = L.

Taking into account the natural identificatiolt(R, M) = R x TM, the first condition
above tells us that can be considered as a function @@/, which is homogeneous of

the first order according to the second condition (cf [8, section 8.1.1, 17, theorems 8.2 and
section 8.3, 27, section 3.1]). In [8, 30], for example, a procedure to pass from a parameter-
invariant (or parametrig Lagrangian of the first order to an associated non-parametric
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Lagrangian with the same extremals is given.LIfTR"*! — R is a parameter-invariant
Lagrangian, the associated non-parametric Lagrangiaft(R, R”) — R is just defined by
E(jxloa) = L((1g, 0).(d/dx),,), for every curves: R — R".

Second-order parameter-invariant Lagrangian densities are characterized by the so-called
Zermelo conditions [17, 31]. For a generalization of the Zermelo conditions to higher-
order problems we refer the reader to Kawaguchi [14]. Zermelo conditions do not have
such an immediate interpretation as the homogeneity condition for first-order Lagrangians.
Nevertheless, second-order problems present some interesting examples in geometry and
elasticity, such as those defined byx)ds [5, 13, 24], wherex stands for the curvature
of a planar curve and is the arc-length parameter. Specially well known is the problem
defined by the squared curvature leading to elastica and spline curves [6, 16, 19].

The goal of this paper is to develop a general procedure valid for parameter-invariant
variational problems of first and second order which includes the classical method in
the particular case of first-order problems. The major difficulty that arises in dealing
with parameter-invariant variational problems is their singularity, which does not allow
us to define the Hamiltonian formalism directly. In the first-order case, a standard way
of introducing the Hamiltonian function for a parameter-invariant problem is given, for
example, in [8, 30], but it does not seem possible to generalize this method to higher-order
Lagrangians. Moreover, the general method to construct the Hamiltonian formalism for
higher-order singular variational problems, using constraints and the Dirac formalism (see
[4, 25, 29]) does not fit as well in the present case as it does not take into account the specific
properties of these problems; i.e. the Zermelo conditions. It seems to us that our method is
more natural since it allows us to introduce the Hamiltonian formulation for second-order
parameter-invariant variational problems whose Hessian is of maximal rank, by defining the
Hamiltonian for the associated non-parametric Lagrangian, solving its Hamilton equations
and then reparametrizing the solutions arbitrarily.

Let us briefly explain the basic motivation. L&t J2(R, N) — R be a parameter-
invariant Lagrangian. If a curve: R — N is immersive aty, we can consider a coordinate
system(x, y!,...,y") on N such that the velocity o& at the pointo (1) is given by
(3/9x)s)- Note that the immersive character @fat 7, only depends ory’,ﬁa and also
that immersiver-jets are a dense open subset/Jf{R, N) for everyr > 1. Hence, at
least locally, we can assume that the manifaldsplits into a productv = R x M,
where R represents the-axis andM stands for the(y!, ..., y")-manifold. Under this
representationg is given by a pair of functions = (f, g), with f:R — R, g:R — M,
where in additionf’ (tp) # 0 by virtue of the immersive character of the curve. Accordingly,
we can associate the-valued ‘non-parametric’ curve o f~%: R — M to the given curve
oc=(f,g))R—-Rx M.

In section 3 the corresponding 2-jet version of the above assignment allows us to obtain
a submersion of jet bundles—called the fundamental projection—through which parameter-
invariant Lagrangians factor modulo contact forms in a sense made precise in theorem 4.1. In
fact, this submersion is defined on a dense open subset ther-jet bundleJ” (R, R x M)
for arbitrary r, although we only apply it to variational problems in the case 2. The
fundamental projection is the basic tool in order to develop the Hamiltonian formalism for
parameter-invariant problems. It is an important fact to remark that the Péir€artan
form of a parameter-invariant Lagrangian behaves even better than the Lagrangian itself with
respect to factoring through the fundamental projection, as in section 5 we prove that the
Poincaé—Cartan form of a parameter-invariant Lagrangian of second order, factors through
the projection. Then, after recalling the Hamilton—Cartan formalism in section 6, we obtain
the theorem 6.1, which says that the extremals of a parameter-invariant Lagrangian are the
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extremals of its projection, composed with any local diffeomorphism of the real line. The
properties of the projection regarding symmetries are studied in section 7. There we explain
why the concept of generalized symmetry (cf [24, definition 5.25]) must be introduced. The
behaviour of the projection with respect to regularity is analysed in section 8, where it is
proved (theorem 8.2) that the rank of the Hessian of a Lagrangian density is not affected by
parameter elimination. Finally, we study an example of application of all these techniques
in section 9.

2. Zermelo conditions

We define the parameter invariance for higher-order Lagrangians in a similar way to the first-
order case. LeM be aC* manifold and letr,o: J" (R, M) — R x M be the bundle of-jets

of curves inM. A LagrangianZ: J"(R, M) — R is said to be invariant under parameter
transformations (or parameter invariant) if for every diffeomorphisriu, b] — [, B] of
classC” with positive derivative everywhere and each cusvéga, 8] — M we have

b B
/ L(3j, (o o¢))du=/ L(j/ (o)) dt. (2.2)
Let us now introduce some notation for the case of second-order Lagrangians:

(t, x*; xk, xk), 1 < k < n = dimM, stand for the coordinates induced ag (R x U)
from a coordinate open domaiit/; x¥) on the manifoldM; i.e.

xk(j20) = g(xk 00)(1), xk(j20) = d—z(xk 0 0)(t)
i dr X dr2 '

Theorem 2.1A second-order Lagrangiad: J2(R, M) — R is parameter invariant if and
only if it satisfies theZermelo conditiongi.e.

oL

=0 2.2)

e - oL

xk—. + ZXkT = E (23)
axk axk

-0

xka_i -0 (2.4)
X

For the proof, we refer the reader to [14, 17, theorem 8.5, 31].

3. The fundamental projection

In the following sections we consider curves ih x M, where M is an arbitraryn-
dimensional manifold. We denote by; y’) the coordinates induced oR x U from
the natural coordinate in the real line and a coordinate open doméih y*) in M. Let
us denote byD, c J"(R, R x M) the dense open subset defined by

O, ={jlo € I'(R,R x M) : x(j'o) # O}.

Note thatO, = n,jll(Ol). A curveo:R — R x M is determined by two mapg: R — R,
g:R — M, so thate = (f, g), and we can define a projection

pr:or - Jr(Rv M)7 pr(jtra):jfr([)(gofil)' (31)
Lemma 3.1.The mappingp, is a surjective submersion.
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Proof. The surjectivity ofp, is trivial, asVj g € J"(R, M) is jig = p,(jI(1g, g)) and
obviously j! (1g, g) € O,. To see thal, is a submersion, we must check the surjectivity
of

(P« Tir(1.90Or = Tir(rgd" R R X M) = Tjr oo p-1) ] (R, M).

We shall prove this by induction on. Forr = 0, it is immediate. For = 1, p; is
given by (¢, x, y'; x, ') — (x,y"; (') = y/x), which is clearly a submersion, where
(x, y'; (¥')) are the coordinates induced @%RR x U) from a coordinate open domain
(U; y*) on M. Letr > 2. Assume(p,_1), is surjective. If we consider the map.,,_;:
J'(R,Rx M) — J YR, R x M) given byr,,_1(j o) = j' 1o, and the similarly defined
map,,_1:J (R, M) — J"~Y(R, M), then the following diagram is commutative:

o0, Zi® M
Trr-1 i« \L -1
0,1 237 YR, M).

Hence we have the following commutative diagram with exact rows:

(T r—1)«
Rl

0 — kelm,_1)x — TJ@RRx M) TI YR, Rx M) — O
3 oo 3 0. 3 o

(Trr—1)x

0 — ke, 1), — TIRM =23 T YR, M) — O
and from the snake diagram [2, proposition 2.10], we obtain the following exact sequence:

0— ker((Pr)*|ker(n,.,,1)*) - ker(pr)* - ker(l’r—l)*
— cokel((p,)«lkerr,, 1)) — cokel(p,), — cokel(p,_1), — O.

By virtue of the hypothesis we have cokgr 1), = 0 and we thus conclude that if
coken(p,)«lker,, ) = 0, then cokefp,), will also vanish. Hence, in order to finish
our proof it is enough to check the surjectivity of the mapping

(pr)*I(ker(n,,,.,l)*)j/r(,_g): (ker(ﬂr,r—l)*)j,"(f,g) - (ker(f[r,r—l)*)j/’m(gof—l)'

Moreover, ke, 1), is generated byd/ax", a/ay*")), and ker#,, 1), is generated
by 3/0y*], where x@ (j7o) = (d*(x o 0)/dt®) (), Y@ (j7o) = (d*(y* o 0)/dt*)(2),
ocoR - Rx M, 1< a <r,1< k < n, stand for the coordinates induced on
n;ol(]R x R x U) from the coordinate open domaifR x U;x,y*) on R x M, and
YA e) = (d*(y* o g)/dx¥)(x), &R — M, 1 < a < r, are the coordinates induced
on ﬁ;ol(R x U) from the coordinate open domai®; y*) on M. Hence we only need to
calculate the dependence of the local expressiop,. ain the highest-order derivatives. We
claim that
x D k) _ @) kD)
(x(l))H—l
1<i<n 1<a<r 1<p<sr-1 Vr > 2 (3.2)

k[r

Vo po(t, x, y's x@, yi@) = + Fi(x, y's x® yi8))

y

F, being certain functions od” (R, R x M). To prove this fact, by induction on we
state

-

d —1\y
10t oo f >)-<

(d'g*/dimy(df/dr) — (dg*/dny(d f/ar”) f‘1>
(df/de)y-+t
+ (terms involving derivatives of ordet r) Vr>2 (3.3)
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(wheregh = y* o0 g). Forr = 2, we have
d—z( g ( )i [<5< g ))( X )>3< H( )]( )
dxzyogof xdx dtyog fxdxf x) | (x
. d dgt 1 1

o [(E (df/dt)) °f }(x)

B [(dzg"/dﬂ) (df/dr) — (dg*/dr) (P f/d®) 1

- (df/dr)2 (df/dr)
Now, if we suppose that (3.3) holds true for- 1, then we have

d [(@tg"/dim ) (df/dr) — (dg*/dr) (@ f/dim )
| d7/dy )

+ (terms involving derivatives of ordet r — 1)](x)

} (f ).

dr
5 0f oo W = f
X

. (d" gk /dt")(df/dt) — (dgh/de)(d f/dt") + (terms of order< r)
B [ (df/dey”
Xm o f~1 4 (terms involving derivatives of ordet r)i|(x)
_ ((d’g"/dt’)(df/dt) — (dg"/dr)(d f/dr") . fl) )
(df/dryr+1
+ (terms involving derivatives of ordet r)

thus proving formula (3.3). Using this formula, we obtain
dr
Yo prGl 0y G (g0 ) = - (0 o (g0 TN ()
_ (dg*/de")(df/dr) — (dg*/dr)(d f/dt™) o
(df/dy+t
+ (terms involving derivatives of ordet r)
x D pk) _ @) k() i i ,
= ( Gy Ry x Py ‘ﬂ)>) G/ (f, &)
1<i<n 1<a<r 1<p<<r-1 Vr > 2

thus proving our claim. Finally, from the formula (3.2) we derive the local expression for
(Pr)«ltkerr )57 00 1-€-

9\ yh® 9 9 1 0
(Pr)« 9x __(x(l))r+layk[r] (Pr)+ dyk® T (xDyr dyklr]

which shows that it is a surjective map. O

Remark 3.1lt is a well known fact (e.g. see [10, section 5]) that the canonical projection
-1 J (R, M) — J'~YR, M) admits an affine bundle structure modelled over the vector
bundle((priomig)*SKT*R) @((praomig)* T M), wherepri:Rx M — R, pra:RxM — M

are the projections onto the factors. Taking this construction into account, it is proved that
the mapp,: O, C J'(R,R x M) — J"(R, M) is an affine bundle morphism ovex._;.
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4. Factoring invariant Lagrangians

In this section, we obtain the connection between the projegijoand the second-order
parameter-invariant Lagrangians. From now on we consider Lagrangians which are defined
on the dense open subs@ c J?(R,R x M). Recall thatO, = =7 ((’)1) (cf section 3),

so thatQ, is the set of all--jets whose velocity has a non- vanlshlmg:omponent Also

note that®, is natural under changes of parameter; i.g%if € O, then]¢ ) (o o) also
belongs toO, for every diffeomorphismp.

Theorem 4.1A second-order LagrangiaC: O, — R is invariant under parameter
transformations if and only if the Lagrangian densityr factors throughp, modulo contact
forms; i.e. there exist§: J2(R, M) — R such thaip;(/fdx) = Ldt+n, wheren is a contact
form in J2(R,R x M). L is called thenon-parametric Lagrangiarassociated wittC.

Proof. Let r andx be two global coordinate systems @ and (y') a local coordinate
system onM. We consider or0, ¢ J?(R,R x M) the coordinatesr, x, y'; x, yi, i, yi),
given by, x andy’; and onJ%(R, M) the coordinatesx, y': (y'), (y')") given byx, y'.
As a first step in the proof, let us see thatis parameter-invariant if and only ifL/x)L
factors throughp,, i.e. if there is an’: J2(R, M) — R such that

(1/0)L = p3(L) = L o pa. (4.1)

The local expression op, is po(t, x, y'; X, yiE Y = (x, v ) = yi/k ()
(xy' — yi%)/x3). S0 p,, has the following local expression:

AR o) @ o) @
D2« )= P2« ox) " ax D2« Byl = Byl
3 yi 9 2/ 3yiE\ 9
e (55) - x28<y-f>'+< @ ) a0y
9\ 1 a8 & 9
Peeoyi) ~ %aGiy ~ Bany

9\ oy 9 9\ 1 2
P2« ) = By D2« ayl _)'Cza(yi)”.

Hence, kep,, is generated by

(4.2)

d d 0 d ad
—¢— —+y—+2x—+2y— X =d— +y—.
0x dyi ax dy ax ay
As p- is a surjective submersion with connected fibres, the necessary and sufficient condition
for a function to factor througlp; is that the Lie derivative of the function in the direction
of any vector field in kep,, vanishes. Hence

1 10L oL
O=Ls|=L)==— << — =0 4.3
u <x > X 0t at (4.3)
1 1 oL oL oL - 0L
O0=Ly <—,E> =—=L+ - (x——i—y — + 22—+ 2y’—.,>
X X X\ 9 dyi 0x ay!
oL oL oL BE
= i+ l—+2x—+21 =L (4.4)
1 0L BE oL - oL
X X 0x ayz 0x dy!
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As (4.3)—(4.5) coincide with the Zermelo conditions (2.2)—(2.4), respectively, we conclude
that parameter invariance is equivalent to (4.1).

Now, let us suppose that (4.1) is fulfilled. As (4.2) yielg$(dx) = dx, we deduce
p3(Ldx) = p3(O)dx = 1Ldy = 1L(dx — xdr) + Ldr = Ldt +pj(L)(dx — xdr); ie.
Ldr factors throughp, modulo contact forms. Conversely, let us suppose that there
exists al: J3(R, M) — R such thatpz(ﬁdx) = Ldt + n, n being a contact form
HenCEpz(L’)dx = pz(lldx) = Ldt +ap(dx — xdf) +ay(dx — ¥dr) + > b, (dy’ — y idr)
+ Zbl,(dy —y ‘dr), and taking components we obtain= bg; = b1; = 0, Vi, ap = p2£
and sol — xpz(L') 0; i.e. (4.1) holds and is parameter invariant. O

5. Factoring Poincare—Cartan forms

In section 4 we have seen that the mapallows us to ‘eliminate’ the parameter from
a parameter-invariant Lagrangian, modulo contact forms. For P&nCartan forms the
result is even better as the Poinga€Cartan form ofZd: is exactly ps-projectable onto the
Poincaé—Cartan form ofZdx.

As is well known (e.g. see [28, theorem 2.1]) mfiorm ®(Ldr) on JZ (R, M) (the
Poinca—Cartan forn) is associated to eactth-order Lagrangian densityd: on J" (R, M),
whose local expression is

n r=1 ,r=l-«a
O(Ldr) _Ldt+zz< > (DD ( xh<a+,+1>))9h (5.1)

1a=0 i=0

where 6! = dy"@ — y"@tds are the standard contact forms ori(R, M) (e.g. see
[28]), and D, is the total derivation operator; i.e. tfRe-derivation D,: C*°(J*(R, M)) —
C®(J*YR, M), Vk € N, given by (D,(/)(jfTo) = @(f o jro)/d)(), f €
C*®(J" (R, M)), whose local expression is

d + i: i h(ae+1) 9
=— x —
T v o dxh(@)

Theorem 5.1Let £: O, — R be a parameter-invariant Lagrangian, and debe as in
theorem 4.1. The PoingarCartan form ofZdr factors througtps onto the Poinc@&-Cartan
form of Ldx, i.e. p3(©(Ldx)) = O(Ldr).

Proof The local expressmn ops agrees with that ofp, up to order 2, andy’)” =

(x%y' — 3xxy + 3y ¥2 — xyix)/x5. Taking into account that in our caszis defined on
0, C JA(R,R x M), recalling the way in which coordinates are induced on this bundle
and the condition (2.2), we obtain,

O(Ld) = Ldr + %(dx — xdr) + E(dyh - y'hdt) - D, (%) (dx — xdr)
ox ayh dx

—D, (E) (dy" — yhdr) + a—‘f(dx — xdr) + a—é(dy'h — yhdr). (5.2)
8yh 0x 8yh

Application of the total derivativeD, in the formula (2.4) yields

oL oL oL oL
x—~|—y—~|—th — ~|—yD, =] =0.
9 ayi 0x Byl
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Back substitution of the above expression into (5.2) gives as a result that

O(Ldr) = Ldr + i—é(dx — xdf) + 8—i(dyh — yhdt) — D, (z—£> dx
X

_D’<a£>dy _x_df 3 2L 6 1 OE (i — sy + 25 (dyr — o)

! oy 3 oy

it g (£ ()
0x ay 0x ay P) 8y

(5.3)

The local version of formula (4.1) states (recall tfatioes not depend on by virtue of

(2.2))

LG,y i,y 5, y) =il (x Vs y. ”;3”> (5.4)
X

and so (with the abuse of notation of writinjinstead ofp3 L= p2£ Lo po)

oL _; yhoAL =2yt 4+3yhi oL
ox X 3(yh)/ %3 8(yh)”

oL oL & oL

9= - 5.5
oy aGhy | X2aGh) (5-3)
oL Yy oL 0L 1 AL
9% - %2 8(yh)// ayh - X a(yh)/,-

Back substitution of these values in (5.3) yields
yh oL —2iyh +3yhk AL L ., & oL
O(Ldr) = Ldx — =— dx - = d
( t) 3( h)/ + %3 3(yh)” + a(yh)/ Yy x2 3(yh)” y
yhoaL 1 AL - dL aL
—= dx + = dy" — D;( — Jdx — D dy” 5.6
Zaohy T Ragn Y T (ax) ’ <8y > v 69

We expand the terms with total derivatives, using (2.2), (5.5) and its derivatives whenever
it is necessary, thus obtaining

L\ AL 2yh% — xyh L
D,(ax) —(")' Dy <a(y”)’/>+ PR TN (5.7)

Similar calculations lead us to

oL AL ¥ AL
Di\—)=Di|—— ]| 5——. 5.8
(ayh> <a(yh)//) xz B(y")” ( )

By back substitution of the expressions (5.7) and (5.8) in (5.6), we obtain

AL —xyh +yhi AL L,
hyr 3 hy + h /dy
a(y ) X Ay ay")

i L) 2 vp (2 Y- b (2L ) gy
+( x2dx+xdy)a( h)//+( ) (a(yh)// dx D" a(yh)// dy

O(Ldr) = Ldx —
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which yields (taking into account that;(d(y")) = —(y /x2)dx + (1/x)dy and that( is
written in the place ofpL = p3£)

O(Ldn) = p3Lp3dv + p35— ( (P3dy" — ") p3d) + P35 ( ,,),, (p3d(Y") = ()" p5dx)

h)/

8£_ /% * r
—p3Dsx (W) (p3dy" — ") pide) E p30 (Ldlv).

6. The Hamilton—Cartan formulation

As is well known , a curver: R — M is an extremal of the variational problem defined by
anrth order LagrangiarCd: if and only if for every vector fieldX € X(JZ1(R, M)) we
have

(jZ Yo )*(ixd®(Ldr)) = 0. (6.1)

It suffices that (6.1) holds true fopri-vertical vector fields (cf [11, equation (3.7), 28]).
The above equation is called ttamilton—Cartan equatiorand it is on the basis of the
Hamiltonian formalism. In fact, we have

. L
(7o) (lxd®(ﬁdt))—2( 47 (a i © cr) 65 (X)(j* o )dkr.

Equation (6.1) and theorem 5.1 lead us to the following characterization of extremals
of a second-order parameter-invariant Lagrangian.

Theorem 6.1Let £ be a second-order parameter-invariant Lagrangiapmn: R x (R x
M) - R. If (f,g):R - R x M is an extremal ofCd: such thatj?(f, g) € O,, then
h=gof %R — M is an extremal oLdx. Conversely, ifi: R — M is an extremal ofdx,
then for every local diffeomorphisnfi: R — R the curve(f, h o f) is an extremal ofZdr.

Proof. Let i:R — M be a curve onM. As we showed in lemma 3.1p3 is surjective,
the fibre overj3h being {j3(f,h o f) : Vf local diffeomorphism. Using this fact and
theorem 5.1 for ever) e X(J3(R, R x M)) we obtain

(31 i (pyy.xdO (LAx) = (F3(f, 1 0 £))* Phi(pe).xdO(Lilx)
= (j3(f, h o f))*ixdO(Ldr).

Taking into account the surjectivity gfs, (again by lemma 3.1), the above formula proves
thath is an extremal ofZdx if and only if (f, ko f) is an extremal of2d:. As every(f, g)
such thatj?(f, g) € O, can be written agf, (g o =1 o f), the proof is complete. [0

Remark 6.1.The above theorem means that the extremals of a second-order parameter-
invariant Lagrangian densitgd:s whose velocity has a nowhere vanishingcomponent

can be obtained from the extremals of the non-parametric Lagramglanby composing

them with an arbitrary local diffeomorphism of the real line.
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7. Infinitesimal symmetries

Let £:J"(R,M) — R be anrth order Lagrangian. Apr;-projectable vector field
X € X(R x M) is said to be aninfinitesimal symmetryof Ldr if Ly (L£df) = O.

In such a case, Noether's theorem [17, 18, 22, 23] states that the fungtion-

iX .y @ (Ldt): J¥ YR, M) — R is constant on the extremals of the variational problem
associated with the Lagrangiaf, where X,_1, is the prolongation of the vector field
X to J¥ YR, M) by means of infinitesimal contact transformations (cf [15, 20]). The
function fx is called theNoether invariantassociated withX. Let us consider a more
general situation and definegeneralized infinitesimal symmetof £dr as a vector field

X € X(JOR, M)) = X(R x M) (not necessarilyr;-projectable) such thatyl, (Ldr) is a
contact form; i.e. it vanishes on everyjet of curve onM (cf [24, definition 5.25]).

Remark 7.11f X € X(R x M) is a generalized infinitesimal symmetry g, then fx
is constant on the extremals d@fdr, i.e. generalized symmetries also produce Noether
invariants.

Proof. From the hypothesis we haveyl (£dr) = 6, whered is a contact form. As
®(Ldr) = Ldr+ contact forms, andX(_1) is an infinitesimal contact transformation,
we obtain L, ,©(Ldr) = n, n being a contact form. Thus; = ix, ,dO(Ldr) +

dix, ,®(Ld) = ix, ,dO(Ldr) +dfx. If o:R — M is an extremal ofLdr, then
(7o) ix, ,,dO(Ld) +d(fxojZto) = (j# to)*n = 0, asy is a contact form; but the

first summand of the above expression vanishes by virtue of the Hamilton equation (6.1),
so we conclude thafy o j# o is constant; i.efx is constant on extremals. [l

To prove the results in this section, we shall make use of the following lemma.

Lemma 7.1For X ¢ X(R x M), let X, and X}, be the prolongations ofX by
infinitesimal contact transformations # (R, R x M) and toJ" (R, M), respectively. Then

X[r] = pr*(X(r))-

Proof. Let pr, and pr, be the canonical projections & x (R x M) ontoR andR x M,
respectively. IfX is the infinitesimal generator of a one-parameter group of transformations
(®y, ¢5) of the fibrationpri: R x M — R, Xp,7 will be the infinitesimal generator of the
one-parameter groupl’) of J7(R, M), given by

(T h) = ji (o (prao g o (Ip, h) o $_y).

Moreover, X can be identified to the vector field = (0,X) € ¥R x (R x M)) (as
a matter of fact,X is pry-vertical and pr,-projectable, andX is its projection onto
R x M by pip). X is the infinitesimal generator of the one-parameter gro@p, 1x)
of the fibration pr;:R x (R x M) — R, where &; = (1g, ®,), and X, is the
generator of the one-parameter grobify of J"(R x (R x M)), given by®") (i’ (f, g)) =
][(p~r2 o qDX o (1]Ra (fv g)) o 1R) = j[r(q)s(.fﬂ g)) = j[(¢s o ‘f7 P”Z o CDS o (fv g)) Hence,
pro @O (f8) = O (7 (g0 FH) = @0 p, (j7 (£, 9), Vil (f) € U, and we
concludep, o @ = ol o p,; ie. puX() = X O

Lemma 7.1 allows us to prove thatdfis a second-order parameter-invariant Lagrangian
on R x M, a vector field onR x M is an infinitesimal symmetry o®(Ldr) (viewed as
the projection of apr;-vertical, pr,-projectable field orR x (R x M)) if and only if it
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is a generalized infinitesimal symmetry &f(Ldx) with vanishing associated contact form.
More precisely,

Theorem 7.2Let £: O, — R be a parameter-invariant Lagrangian, andXet X(R x M).
Then, L, ©(Ldr) = 0 if and only if Ly, ®(Ldx) = 0.

3)

Proof. Theorem 5.1 and lemma 7.1 yield

Lxo ©(Ldr) = Ly, p5©(Ldx) = piL,, x, O (Ldx) = pily, ©(Ldx) (7.1)
and the result follows ag} is injective (or, equivalentlyps,, is surjective, recalling
lemma 3.1). O

The next theorem provides us with a relationship between some infinitesimal symmetries
of a parameter-invariant Lagrangighand the generalized infinitesimal symmetries of its
non-parametric Lagrangiafi. Again, this result is weaker than the one that we have just
obtained for symmetries of the PoinéaCartan form.

Theorem 7.3Let £: O, — R be a parameter-invariant Lagrangian ahds in theorem 4.1.
We identify eachpr,-projectable vector field € X(R x M) to the pr,-vertical vector field
(0,X) €e XR x R x M). Then,X is an infinitesimal symmetry ofd: if and only if X is
a generalized infinitesimal symmetry 6fix.

Proof. Let (x,y’) be local coordinates iR x M, and let us write the fieldX as
X =a(x, y)(d/0x) + B (x, y')(3/9y"). Then (see [20]),

X a+ﬁ"a + 8+;3ia + a+ﬁ"a (7.2)
= 0— — o1— —_ oo—— —_ .
@ 0x ay! 183& 18y" 28)'5 28 i
where
oo Jdo -,
= 4 — i 7.3
o1 3xx+ ayjy (7.3)

(the other coefficients will not be used in the proof). We begin with the direct implication.
From the hypothesis, i, (Ldf) = (X 2(£))dr = 0. We thus obtain

p;LX[Z] (E_dx) = pZLpz*X(z) (de) = p;ipz*x(ad(["dx) + p;dipz*Xa) (E_dx)
= ix,d(p3(Ldx)) + dix,, p5(Ldx)

1 1
<L1>,-X(2)d (—,ﬁdx) + dix,, (—_ﬁdx>
X X
. 1 1 1
=lxp ——ZEdX Adx +—-dC Adx ) +d _.‘ClX(z) (dx)
X X X
1 1 1 1
D Logdx + - Ladi + Tix, (A0)dx — Zadl
X X X X
1 1 1
——2£ozdx + TO[dE + —,EdOl
X X X
1 1
= )—C (X(z) (C)dx + Ldo — )—Cﬁaldx)

1.9 a . 1/0 o -
2| Zdr+ —ody’ — = ok o yi ) d
X dax ay! X \ 0x ay!

1 oo oy 0 N
il (dy' - y—.dX) = p3 ('C—(dy’ =09 d’C)) '
X 0y X ay'
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As p3 is injective (or, equivalentlyp., is surjective; see lemma 3.1) we conclud@zllcﬁ_dx)
= L(da/dy")(dy’ — (y')'dx); i.e. it is a contact form, and sk is a generalized infinitesimal
symmetry ofCdx.

Conversely, let us suppose thaj;[;].(ﬁ_dx) is a contact form. A€ (¢) is congruent
with ¢ modulo contact forms for every density(see (5.1)), we have th&i(Lx,, (Ldx)) is
a contact form. We recall that the infinitesimal functoriality of Poigea&artan form (e.qg.
see [21,theorem 2]) meang L ®(Ld) = O(Lx, (Ldt)). Using this fact and the formula
(7.1) we obtain

P3O (Lx, (Ldr)) = pilx, ©(Ldx) = Ly, O(Ldr)
= O(Lx, (£d) E'O (X5 (L)d)
Dy 2 (£)dr 4 contact forms

and from the local expression gf,
* /i N i yi i N yi ‘

i i 1o e gyl —yik ,
PHAL) — (1)) = — T (e — ) + 2 (A - yid) — S (dr — )

* iV NI —2)‘6 ",' + 3 lx . . )C . .i .
P3O — ()"dr) = —ZE 2 T (di — g + S5y’ — yidh) - )%(dx ~ ¥dr)

%5’ = Biiyl + 3ylE? — iyl¥

1 - .
+5(dy —5'dn) - (dx —xdr)
X

x5
i.e. p5 maps contact forms onto contact forms, and so we haveXpatl)dr is a contact
form. HenceX (L) = 0; i.e. Ly, (£dt) = 0. (I

This theorem shows us how, projects some infinitesimal symmetries of a second-
order parameter-invariant Lagrangian onto the generalized infinitesimal symmetries of its
non-parametric Lagrangian. Then, the next consequence of lemma 7.1 and theorem 5.1 is
that p3 maps the Noether invariants onto the corresponding Noether invariants.

Corollary 7.4.Let £: O, — J2(R, M) be a parameter-invariant Lagrangian, 2tbe the
corresponding non-parametric Lagrangian and Xetbe a vector field onX(R x M).
Let fx: J3R,R x M) - R, fx:J3R, M) — R be the functionsfy = ix,®(Ldr),
fx = ixy ©(Ldy), respectively. Thenfy|o, = fx o pa.

Remark 7.2The vector fieldd/dt is an infinitesimal symmetry for every second-order
parameter-invariant Lagrangian, by (2.2). We could thus expect to obtain some information
from its Noether invariant, thelamiltonian In the case that we ‘eliminated’ the parameter,
this information would be lost, ap,.(d/dt) = 0. In fact, no useful information can be
obtained from the Hamiltonian of a parameter-invariant variational problem, as it vanishes
identically.

Proof. If £(z, x*; x*, x¥) is a second-order parameter-invariant Lagrangian, the Hamiltonian
is H = —iy3©(Ldt) and (2.2), (5.1) yield
oL - AL\ - oL -
H = —£ + —..Xk — D[ (—) .Xk + T.Xk. (74)
axk axk k
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Applying the total derivation in (2.4), we obtaiR, (3.£/dx*)x* + 8.£/x* = 0, and finally,
by back substitution in (7.4), we have

oL - oL -
H = —£ + —.xk + ZTxk(zis) .
axk axk

8. The Hessian metric: regularity

Let g: N — M be an affine bundle modelled over the vector bunell# — M and let
f:N — R be a differentiable function. There is a canonical isomorphigvi = kerg,
given by the magy, v) — X, ,, where

X, 0(f) = !I_% f@tv+ yt) F ()
is the directional derivative off at y € N, in the direction ofv € V,, (see [9]). For
xo € M, let fy:Vy, x Ny — R be the function given byf, (v, y) = X, ,(f), Yv € V,,
Vy € N,,. For eachyy € N,,, we define Hess(f): V,, x V,, - R as

HeS§0(f)(v, w) = Xyo,w(fxo(v’ )) Yo, w € on
where fy, (v, -): Ny, — R is the function f,, (v, )(y) = fy, (v, y). Note that Hesg(f) is
well defined, asX,, , is a tangent vector to the fib¥, . For more details, see [11]. Let
us calculate the local expression of Hgég). Let (U; x1, ..., x") be a coordinate domain
in M such thatV and N trivialize onU, (¢, ..., ¢") a basis of sections df (U, V), and
s:U — N a section ofg such thats(xg) = yo. Then, (x/, s, ¢') induces a coordinate
system(xt, ..., x"; ¥, ..., y") on ¢ H(U) as follows: (3_; v (1)’ (x)) + s(x) = y,
Yy € ¢7Y(U). In these coordinates, we obtajfi,(v,y) = Y ;_(df/dy) (', v =
> i1 V'’ (x0), and Hesg () (v, w) = Y7 ;_1(3%/3y"dy’)(yo)viw;. Therefore Hess(f)
is a symmetric bilinear form; so it defines a tensor Hgg5 < SZV);;. Using the affine
structure ofJ" (R, M) (remark 3.1), we can construct the tensor HE$dor a Lagrangian
L: J3(R, M) — R, thus obtaining a metric Hess (L) € S2(S2(TR),0®,%(R’M) (T*M) o)),
which is known as théiessian metricof £, and whose local expression is
%L @ a9

Hessl) = T ® — dx
) i;laxiax/at@)at@ ®8t®3t

JeC®(N)

® dx’. (8.1)

Now considerp,: O, — J?(R, M), which is a morphism of affine bundles ovgy, (see
remark 3.1) and therefore induces a vector bundle morphism

pz: SZT*R ®]1(R,R><M) T(R X M) — SZT*R ®11(R,M) ™™

as follows: if# is the only element o§?T*R®T (R x M) such thatj?(f. g) = h+ j2(f. 2),
with j(f, &) = ji(f, &), then pa(h) is the only element inS?T*R ® TM such that

p2i2(f.8)) = p2(h) + p2(j2(f.8). In local coordinates, if(r,x,y', ., yi: h° ')
represents the element

h=ho(dt @ dr ® (3/0x));37.¢) + h' (A @ At ® (3/3Y))j1 (5.0 1<i<n
JjX(f. ¢) being given by(z, x, y', x, y'), then
hxGES 8) — %Y GA(f. 8))
CIORCFINE
Accordingly, the coordinates gf,(h) are (x, y', (y) = y/x; (hix — hOyi)/i3).

pa(h) = (dr ® dr ® (8/9y))j1, (gos -
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Theorem 8.1Let £: 0, — R be a parameter-invariant Lagrangian, and4ebe the non-
parametric Lagrangian associated with Then,

- d
HesSz 1) (L) (h, h) = —f(fo)HeS§( (o1 (L) (D2(h), pa(h))

T 2%
forall h,h € (SPT*"R® TR x M))ja ;).

Proof. From the local expression gf, we obtain

. . - - u 92L 1 .-
Hess L WO, k'), pa(hO, hi)) = S —— Y
$L)(p2(h°, h'), p2(h®, 1)) ijla(y,),,a(yj),, .

n

_ . O n E_ _y'j i
+Z<Z a0y )~a<yf>r x5) g +Z(Za<y NaGIy 5 )h "

j=1

- I AT
+< 2 557Gy 58 )h " 82)

i,j=1

The second derivatives af with respect to(x, jz"') in formula (5.4) are
2L 1 9L 3 2L -yl

Iy ()" %3 ayigyi AN ()" x4

2L 3 2L  yiyi 2L

= - - - = —, 8.3
3jéayi oy a(yz)//a(yj)u x5 0x2 ( )
Back substitution in (8.2) yields
(HessL))(pa(h°, h'), p2(h°, hi)) = x—.Hesew)(rhO, ', (hO, hi)).
O

Remark 8.1We recall that a Lagrangiad: J2(R, M) — R is said to beregular if the
Hessian metric He$g) is non-degenerate. The regularity of a Lagrangian allows us to

perform a change of coordinates between the variapleg, x" xk % ) and the canonical
variables(t; x*, x*; p*, pk) where thep’s are thegeneralized momentge.g. see [7]), also
known asJacobr —Ostrogradski momenta

oL oL . L
k- =~ _p | = k= . 8.4

b dxk l(&xk> b dxk 84)
Proof. The Jacobian of the coordinate change is

a(t, x*, xk, pk, pky  B(p*, ph)
A, xk, xk, k7Y ok, 7

As
0L 9L . 2L . 9L L 9L

1 L

axk  9roxk dxioxk dxioxk axioxk
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we have that the above determinant is

apt  ap 02L
axt ax | _ dxixk
det apk opt | = det 92p
o o Dk
which is non-zero if and only if des2£/dxx*) # O. d

Remark 8.2 Parameter-invariant Lagrangians of second order are not regular.

Proof. The condition on Heg£) of being non-degenerate can be written locally as
det(d2£/0x'dx/) # 0. Derivation with respect ta‘ in (2.4) yieldsx*(92£/dxi3x¥) = 0,

and so we obtain a vanishing linear combination of the columns (or rows) of the matrix
(92£/3x'dx7) which is non-trivial at each point where a component£ 0. O

The projectionp,, however, may carry a parameter-invariant (and thus non-regular)
Lagrangianl over a regular Lagrangiag.

Theorem 8.2Let £: O, — R be a parameter-invariant Lagrangian, andJebe the non-
parametric Lagrangian associated with Then, £ is regular if and only if the rank of the
Hessian of isn = dimM = dim(R x M) — 1.

Proof. The local expression of He@3) is given by the matrix

2L L 9L
9X2 iyt T dEyn
L az,c . az_ﬁ
Ay gytyn T gyl
Using the formulae (8.3), we obtain
PL_ iy L —Z oL
A I IO ) VAR S R T
i,j=1 i=1
(8.6)
0%L . 3L
-3k SN
axy/ 49y () )”()”)” " yiyi

i.e. the first row of the matrix (8.5) is a linear combination of the other rows, and also the
first column of the above matrix is a linear combination of the other columns. So the rank
of (8.5) is the same as the rank of

%L %L
ayrs T ayty
9L 9L
aylyn T ay"nz

From (8.3) it follows that the above matrix represents the Hessian metuc rotiltiplied
by the scalar_,b'c3 (recall x # 0 as we are i0;,). Hence, the rank of He&8) equals the
rank of Hesgl). O
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Remark 8.3 The importance of this result lies in the fact that for a regular Lagrangian
L:J3(R, M) — R, the equation

(ys)*ixd®(Ldt) = 0 VX € X(J3R, M) (8.7)

(whereys is a section of/3(R, M)) is equivalent to the existence of an extremalZa,
o, such thatys = j%0 (cf [11, theorem 3.1, 28]).

Hence, in order to obtain the extremals of a regular second-order Lagrangian, it suffices
to solve a Pffafian system in the 3-jet bundle. If the Lagrangian is parameter invariant,
it is not regular (see remark 8.2), and we cannot apply this method. Nevertheless, if the
rank of the Hessian of is equal to dim(R x M) — 1, the non-parametric Lagrangian is
regular and we can obtain its extremals by solving the exterior differential system given
by (8.7). Then, we transport these extremaldRtox M by reparametrizing them, as we
saw in remark 6.1. In this way we obtain a Hamiltonian formulation for second-order
parameter-invariant variational problems whose Hessian metric is of maximal rank.

9. An example

As an example of application, we calculate the Hamilton equations to the non-parametric
version of the squared-curvature LagrangiaRR#n We consider the Lagrangiatds = «2ds,
wherek, is the curvature of () = (x(¢), y(¢)) ands is the arc-length parameter. We have

. ee T . e e 2
XYy =Xy 2 - 2\1/2 _ (Xy—xy)
Ky = —()éz T ds = (x°+ y9)7°dt Ldr = —(XZ 522
As a simple calculation showg, satisfies the Zermelo conditions and hence it is parameter-
invariant. After factorization througlp,, we obtain the non-parametric Lagrangian, whose
expression is (cf [19, equation (3.2)]):

"2
y

= (1+y/2)5/2dx

and accordingly, it is obviously regulad3/dy"? # 0).
Applying the formulae (8.4), we obtain the generalized momenta

p =5y Y21+ y?) 7 —2y" 1+ y? %2
= (1+y?) 25y y"? — 2y"(1+ y?))
P =2y"(1+y?%2
Using (5.1), we calculate the PoinéaCartan form foiZ,
O(Ldx) = y"*(1+ y?)>2dx 4+ 2y" (1 + y»)~*?(dy’ — y"dx)
+ (5y'y"2(L+ y?) ™7 = 2y" (14 y*)7¥?) (dy — y'dx)
and finally, the Hamiltonian
H = —i:©(Ldy)
= =2+ yH T+ 2y A+ YA R By A+ yH T
—2y'y"(1+ y?) 2
= Y2A+yH T4y A+ YA TREY Y = 2" (A + 7).
Making the change of coordinates to the canonical variables, we obtain

Ldx

H= %y//p/ + y/p — i_Llp/Z(l_i_ y/2)5/2 + y'p.
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In this way, the Hamilton equations (see [7]),

dy 9H dy’  9H dp  9H dp'  9H
) dx — ap’ dr 9y dr 9y
are

dy

= =y 9.1

il (9.1)

d ! ! /.

o = Ay 9-2)
X

dp

L =0 9.3
& (9.3)

dp/ !’/ /.

it A 214 y?)¥2. (9.4)

Equation (9.1) says nothing but that the solution is the jet of a curve, equation (9.3) states
that p is constant along extremals, and the two remaining equations form a system of non-
linear ordinary differential equations, whose solutions are the extremals of the variational
problem associated with the squared-curvature Lagrangian (cf [6, section 3a]).
As L is trivially invariant with respect to the vector fieltydx, the Hamiltonian must
be constant along extremals, as follows from Noether’'s theorem. If we wfite terms
of y’ using equation (9.2) and then substitute it in the expression of the Hamiltonian, we
obtain
’ 2 N\ 2
H= —((1d4y_ ﬁ,(rjzx))s/z +y'p or (%) = (H - py) 1+ y?*?
whereH and p are constants. In this way, we have reduced the equations for the extremals
of £ to a first-order nonlinear ordinary differential equation.
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