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Abstract. A projection is defined such that a second-order Lagrangian density factors through
this projection modulo contact forms if and only if it is parameter invariant. In this way,
a geometric interpretation of the parameter invariance conditions is obtained. The above
projection is then used to prove the strict factorization of the Poincaré–Cartan form attached to a
parameter-invariant variational problem thus leading us to state the Hamilton–Cartan formalism,
the complete description of symmetries and regularity for such problems. The case of the
squared curvature Lagrangian in the plane is analysed especially.

1. Introduction

First-order variational problems whose action integral does not change under arbitrary
transformations of the independent variable (orparameter-invariant problems) have a
significant role in pseudo-Riemannian and Finsler geometry as well as in classical and
relativistic mechanics [1, 3, 12, 14, 17, 26, 27]. As is well known, first-order parameter-
invariant Lagrangian densities are defined by Lagrangian functions on the tangent bundle
which are positively homogeneous of first degree, and there is a standard procedure,
coming back from Jacobi and Carathéodory (e.g. see [8, section 8.1.2] and references
therein, or [27]), which allows one to associate a non-parametric Lagrangian to each
first-order parameter-invariant problem. Let us sketch a brief review of this theory: let
π10: J 1(R,M) → R ×M, be the bundle of 1-jets of curves on ann-dimensional smooth
manifoldM. A LagrangianL: J 1(R,M) → R is parameter-invariantif its fundamental
integral is invariant under arbitrary changes of the parameterφ: [a, b] → [α, β] of classC1

with φ′(t) > 0 (see formula (2.1) below whenr = 1). If we denote by(t, xi, ẋi) the local
coordinates induced inπ−1

10 (U) by a local coordinate system(U, xi) of the manifoldM;
i.e. ẋk(j1

t σ ) = (d/dt)(xk ◦ σ)(t), then we can characterize first-order parameter-invariant
Lagrangians as the functionsL: J 1(R,M)→ R verifying (∂L/∂t) = 0, ẋi (∂L/∂ẋi) = L.
Taking into account the natural identificationJ 1(R,M) = R × TM, the first condition
above tells us thatL can be considered as a function onTM, which is homogeneous of
the first order according to the second condition (cf [8, section 8.1.1, 17, theorems 8.2 and
section 8.3, 27, section 3.1]). In [8, 30], for example, a procedure to pass from a parameter-
invariant (or parametric) Lagrangian of the first order to an associated non-parametric
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Lagrangian with the same extremals is given. IfL: TRn+1 → R is a parameter-invariant
Lagrangian, the associated non-parametric LagrangianL̄: J 1(R,Rn)→ R is just defined by
L̄(j1

x0
σ) = L((1R, σ )∗(d/dx)x0), for every curveσ :R→ Rn.

Second-order parameter-invariant Lagrangian densities are characterized by the so-called
Zermelo conditions [17, 31]. For a generalization of the Zermelo conditions to higher-
order problems we refer the reader to Kawaguchi [14]. Zermelo conditions do not have
such an immediate interpretation as the homogeneity condition for first-order Lagrangians.
Nevertheless, second-order problems present some interesting examples in geometry and
elasticity, such as those defined byφ(κ)ds [5, 13, 24], whereκ stands for the curvature
of a planar curve ands is the arc-length parameter. Specially well known is the problem
defined by the squared curvature leading to elastica and spline curves [6, 16, 19].

The goal of this paper is to develop a general procedure valid for parameter-invariant
variational problems of first and second order which includes the classical method in
the particular case of first-order problems. The major difficulty that arises in dealing
with parameter-invariant variational problems is their singularity, which does not allow
us to define the Hamiltonian formalism directly. In the first-order case, a standard way
of introducing the Hamiltonian function for a parameter-invariant problem is given, for
example, in [8, 30], but it does not seem possible to generalize this method to higher-order
Lagrangians. Moreover, the general method to construct the Hamiltonian formalism for
higher-order singular variational problems, using constraints and the Dirac formalism (see
[4, 25, 29]) does not fit as well in the present case as it does not take into account the specific
properties of these problems; i.e. the Zermelo conditions. It seems to us that our method is
more natural since it allows us to introduce the Hamiltonian formulation for second-order
parameter-invariant variational problems whose Hessian is of maximal rank, by defining the
Hamiltonian for the associated non-parametric Lagrangian, solving its Hamilton equations
and then reparametrizing the solutions arbitrarily.

Let us briefly explain the basic motivation. LetL: J 2(R, N) → R be a parameter-
invariant Lagrangian. If a curveσ :R→ N is immersive att0, we can consider a coordinate
system(x, y1, . . . , yn) on N such that the velocity ofσ at the pointσ(t0) is given by
(∂/∂x)σ(t0). Note that the immersive character ofσ at t0 only depends onj1

t0
σ and also

that immersiver-jets are a dense open subset inJ r(R, N) for every r > 1. Hence, at
least locally, we can assume that the manifoldN splits into a productN = R × M,
whereR represents thex-axis andM stands for the(y1, . . . , yn)-manifold. Under this
representation,σ is given by a pair of functionsσ = (f, g), with f :R→ R, g:R→ M,
where in additionf ′(t0) 6= 0 by virtue of the immersive character of the curve. Accordingly,
we can associate theM-valued ‘non-parametric’ curveg ◦ f −1:R→ M to the given curve
σ = (f, g):R→ R×M.

In section 3 the corresponding 2-jet version of the above assignment allows us to obtain
a submersion of jet bundles—called the fundamental projection—through which parameter-
invariant Lagrangians factor modulo contact forms in a sense made precise in theorem 4.1. In
fact, this submersion is defined on a dense open subsetOr of ther-jet bundleJ r(R,R×M)
for arbitrary r, although we only apply it to variational problems in the caser = 2. The
fundamental projection is the basic tool in order to develop the Hamiltonian formalism for
parameter-invariant problems. It is an important fact to remark that the Poincaré–Cartan
form of a parameter-invariant Lagrangian behaves even better than the Lagrangian itself with
respect to factoring through the fundamental projection, as in section 5 we prove that the
Poincaŕe–Cartan form of a parameter-invariant Lagrangian of second order, factors through
the projection. Then, after recalling the Hamilton–Cartan formalism in section 6, we obtain
the theorem 6.1, which says that the extremals of a parameter-invariant Lagrangian are the
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extremals of its projection, composed with any local diffeomorphism of the real line. The
properties of the projection regarding symmetries are studied in section 7. There we explain
why the concept of generalized symmetry (cf [24, definition 5.25]) must be introduced. The
behaviour of the projection with respect to regularity is analysed in section 8, where it is
proved (theorem 8.2) that the rank of the Hessian of a Lagrangian density is not affected by
parameter elimination. Finally, we study an example of application of all these techniques
in section 9.

2. Zermelo conditions

We define the parameter invariance for higher-order Lagrangians in a similar way to the first-
order case. LetM be aC∞ manifold and letπr0: J r(R,M)→ R×M be the bundle ofr-jets
of curves inM. A LagrangianL: J r(R,M) → R is said to be invariant under parameter
transformations (or parameter invariant) if for every diffeomorphismφ: [a, b] → [α, β] of
classCr with positive derivative everywhere and each curveσ : [α, β] → M we have∫ b

a

L(j ru(σ ◦ φ)) du =
∫ β

α

L(j rt (σ )) dt. (2.1)

Let us now introduce some notation for the case of second-order Lagrangians:
(t, xk; ẋk, ẍk), 1 6 k 6 n = dimM, stand for the coordinates induced onπ−1

20 (R × U)
from a coordinate open domain(U ; xk) on the manifoldM; i.e.

ẋk(j2
t σ ) =

d

dt
(xk ◦ σ)(t), ẍk(j2

t σ ) =
d2

dt2
(xk ◦ σ)(t).

Theorem 2.1.A second-order LagrangianL: J 2(R,M) → R is parameter invariant if and
only if it satisfies theZermelo conditions; i.e.

∂L
∂t
= 0 (2.2)

ẋk
∂L
∂ẋk
+ 2ẍk

∂L
∂ẍk
= L (2.3)

ẋk
∂L
∂ẍk
= 0. (2.4)

For the proof, we refer the reader to [14, 17, theorem 8.5, 31].

3. The fundamental projection

In the following sections we consider curves inR × M, whereM is an arbitraryn-
dimensional manifold. We denote by(x; yi) the coordinates induced onR × U from
the natural coordinatex in the real line and a coordinate open domain(U ; yi) in M. Let
us denote byOr ⊂ J r(R,R×M) the dense open subset defined by

Or = {j rt σ ∈ J r(R,R×M) : ẋ(j rt σ ) 6= 0}.
Note thatOr = π−1

r,1 (O1). A curveσ :R→ R×M is determined by two mapsf :R→ R,
g:R→ M, so thatσ = (f, g), and we can define a projection

pr :Or → J r(R,M), pr(j rt σ ) = j rf (t)(g ◦ f −1). (3.1)

Lemma 3.1.The mappingpr is a surjective submersion.
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Proof. The surjectivity ofpr is trivial, as∀j rx g ∈ J r(R,M) is j rx g = pr(j
r
x (1R, g)) and

obviously j rx (1R, g) ∈ Or . To see thatpr is a submersion, we must check the surjectivity
of

(pr)∗: Tjrx (f,g)Or = Tjrx (f,g)J r(R,R×M)→ Tjrf (x)(g◦f −1)J
r (R,M).

We shall prove this by induction onr. For r = 0, it is immediate. Forr = 1, p1 is
given by (t, x, yi; ẋ, ẏi) 7→ (x, yi; (yi)′ = ẏi/ẋ), which is clearly a submersion, where
(x, yi; (yi)′) are the coordinates induced onπ−1

10 (R × U) from a coordinate open domain
(U ; yk) on M. Let r > 2. Assume(pr−1)∗ is surjective. If we consider the mapπr,r−1:
J r(R,R×M)→ J r−1(R,R×M) given byπr,r−1(j

r
x σ ) = j r−1

x σ , and the similarly defined
map π̃r,r−1: J r(R,M)→ J r−1(R,M), then the following diagram is commutative:

Or
pr−→J r(R,M)

πr,r−1 ↓ ↓ π̃r,r−1

Or−1
pr−1−→J r−1(R,M).

Hence we have the following commutative diagram with exact rows:

0 → ker(πr,r−1)∗
i→ T J r(R,R×M) (πr,r−1)∗−→ T J r−1(R,R×M) → 0

↓ (pr )∗ ↓ (pr )∗ ↓ (pr−1)∗

0 → ker(π̃r,r−1)∗
i→ T J r(R,M)

(π̃r,r−1)∗−→ T J r−1(R,M) → 0

and from the snake diagram [2, proposition 2.10], we obtain the following exact sequence:

0→ ker((pr)∗|ker(πr,r−1)∗)→ ker(pr)∗ → ker(pr−1)∗
→ coker((pr)∗|ker(πr,r−1)∗)→ coker(pr)∗ → coker(pr−1)∗ → 0.

By virtue of the hypothesis we have coker(pr−1)∗ = 0 and we thus conclude that if
coker((pr)∗|ker(πr,r−1)∗) = 0, then coker(pr)∗ will also vanish. Hence, in order to finish
our proof it is enough to check the surjectivity of the mapping

(pr)∗|(ker(πr,r−1)∗)jrt (f,g)
: (ker(πr,r−1)∗)jrt (f,g)→ (ker(π̃r,r−1)∗)jrf (t)(g◦f −1).

Moreover, ker(πr,r−1)∗ is generated by(∂/∂x(r), ∂/∂yk(r)), and ker(π̃r,r−1)∗ is generated
by ∂/∂yk[r] , where x(α)(j rt σ ) = (dα(x ◦ σ)/dtα)(t), yk(α)(j rt σ ) = (dα(yk ◦ σ)/dtα)(t),
σ :R → R × M, 1 6 α 6 r, 1 6 k 6 n, stand for the coordinates induced on
π−1
r0 (R × R × U) from the coordinate open domain(R × U ; x, yk) on R × M, and
yk[α](j rx g) = (dα(yk ◦ g)/dxα)(x), g:R → M, 1 6 α 6 r, are the coordinates induced
on π̃−1

r0 (R × U) from the coordinate open domain(U ; yk) on M. Hence we only need to
calculate the dependence of the local expression ofpr on the highest-order derivatives. We
claim that

yk[r] ◦ pr(t, x, yi; x(α), yi(α)) = x(1)yk(r) − x(r)yk(1)
(x(1))r+1

+ Fk(x, yi; x(β), yi(β))
16 i 6 n 16 α 6 r 16 β 6 r − 1 ∀r > 2 (3.2)

Fk being certain functions onJ r−1(R,R ×M). To prove this fact, by induction onr we
state

dr

dxr
(yk ◦ (g ◦ f −1)) =

(
(drgk/dt r )(df/dt)− (dgk/dt)(drf/dt r )

(df/dt)r+1
◦ f −1

)
+ (terms involving derivatives of order< r) ∀r > 2 (3.3)
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(wheregk = yk ◦ g). For r = 2, we have

d2

dx2
(yk ◦ g ◦ f −1)(x)

d

dx

[(
d

dt
(yk ◦ g)

)
(f −1(x))

d

dx
(f −1)(x)

]
(x)

= d

dx

[(
dgk

dt

1

(df/dt)

)
◦ f −1

]
(x)

=
[
(d2gk/dt2)(df/dt)− (dgk/dt)(d2f/dt2)

(df/dt)2
1

(df/dt)

]
(f −1(x)).

Now, if we suppose that (3.3) holds true forr − 1, then we have

dr

dxr
(yk ◦ (g ◦ f −1))(x) = d

dx

[
(dr−1gk/dt r−1)(df/dt)− (dgk/dt)(dr−1f/dt r−1)

(df/dt)r
◦ f −1

+ (terms involving derivatives of order< r − 1)

]
(x)

=
[
(drgk/dt r )(df/dt)− (dgk/dt)(drf/dt r )+ (terms of order< r)

(df/dt)r

× 1

(df/dt)
◦ f −1+ (terms involving derivatives of order< r)

]
(x)

=
(
(drgk/dt r )(df/dt)− (dgk/dt)(drf/dt r )

(df/dt)r+1
◦ f −1

)
(x)

+ (terms involving derivatives of order< r)

thus proving formula (3.3). Using this formula, we obtain

yk[r] ◦ pr(j rt (f, g))yk[r](j rf (t)(g ◦ f −1)) = dr

dxr
(yk ◦ (g ◦ f −1))(f (t))

=
(
(drgk/dt r )(df/dt)− (dgk/dt)(drf/dt r )

(df/dt)r+1

)
(t)

+ (terms involving derivatives of order< r)

=
(
x(1)yk(r) − x(r)yk(1)

(x(1))r+1
+ Fk(x, yi; x(β), yi(β))

)
(j rt (f, g))

16 i 6 n 16 α 6 r 16 β 6 r − 1 ∀r > 2

thus proving our claim. Finally, from the formula (3.2) we derive the local expression for
(pr)∗|(ker(πr,r−1)∗)jrt (f,g)

; i.e.

(pr)∗

(
∂

∂x(r)

)
= − yk(1)

(x(1))r+1

∂

∂yk[r]
(pr)∗

(
∂

∂yk(r)

)
= 1

(x(1))r

∂

∂yk[r]

which shows that it is a surjective map. �

Remark 3.1.It is a well known fact (e.g. see [10, section 5]) that the canonical projection
πr,r−1: J r(R,M)→ J r−1(R,M) admits an affine bundle structure modelled over the vector
bundle((pr1◦π10)

∗SkT ∗R) ⊗((pr2◦π10)
∗TM), wherepr1:R×M → R, pr2:R×M → M

are the projections onto the factors. Taking this construction into account, it is proved that
the mappr :Or ⊂ J r(R,R×M)→ J r(R,M) is an affine bundle morphism overpr−1.



6230 J Muñoz Masqu´e and L M Pozo Coronado

4. Factoring invariant Lagrangians

In this section, we obtain the connection between the projectionp2 and the second-order
parameter-invariant Lagrangians. From now on we consider Lagrangians which are defined
on the dense open subsetO2 ⊂ J 2(R,R ×M). Recall thatOr = π−1

r,1 (O1) (cf section 3),
so thatOr is the set of allr-jets whose velocity has a non-vanishingx-component. Also
note thatO2 is natural under changes of parameter; i.e. ifj2

t σ ∈ O2, thenj2
φ−1(t)

(σ ◦φ) also
belongs toO2 for every diffeomorphismφ.

Theorem 4.1.A second-order LagrangianL:O2 → R is invariant under parameter
transformations if and only if the Lagrangian densityLdt factors throughp2 modulo contact
forms; i.e. there exists̄L: J 2(R,M)→ R such thatp∗2(L̄dx) = Ldt+η, whereη is a contact
form in J 2(R,R×M). L̄ is called thenon-parametric Lagrangianassociated withL.

Proof. Let t and x be two global coordinate systems onR, and (yi) a local coordinate
system onM. We consider onO2 ⊂ J 2(R,R ×M) the coordinates(t, x, yi; ẋ, ẏi , ẍ, ÿi),
given by t, x andyi ; and onJ 2(R,M) the coordinates(x, yi; (yi)′, (yi)′′) given byx, yi .
As a first step in the proof, let us see thatL is parameter-invariant if and only if(1/ẋ)L
factors throughp2, i.e. if there is anL̄: J 2(R,M)→ R such that

(1/ẋ)L = p∗2(L̄) = L̄ ◦ p2. (4.1)

The local expression ofp2 is p2(t, x, y
i; ẋ, ẏi , ẍ, ÿi) = (x, yi; (yi)′ = ẏi/ẋ, (yi)′′ =

(ẋÿi − ẏi ẍ)/ẋ3). Sop2∗ has the following local expression:

p2∗

(
∂

∂t

)
= 0 p2∗

(
∂

∂x

)
= ∂

∂x
p2∗

(
∂

∂yi

)
= ∂

∂yi

p2∗

(
∂

∂ẋ

)
= − ẏ

j

ẋ2

∂

∂(yj )′
+
(
−2ÿj

ẋ3
+ 3ẏj ẍ

ẋ4

)
∂

∂(yj )′′

p2∗

(
∂

∂ẏi

)
= 1

ẋ

∂

∂(yi)′
− ẍ

ẋ3

∂

∂(yi)′′

p2∗

(
∂

∂ẍ

)
= − ẏ

j

ẋ3

∂

∂(yj )′′
p2∗

(
∂

∂ÿi

)
= 1

ẋ2

∂

∂(yi)′′
.

(4.2)

Hence, kerp2∗ is generated by

∂

∂t
, φ = ẋ ∂

∂ẋ
+ ẏi ∂

∂ẏi
+ 2ẍ

∂

∂ẍ
+ 2ÿi

∂

∂ÿi
χ = ẋ ∂

∂ẍ
+ ẏi ∂

∂ÿi
.

Asp2 is a surjective submersion with connected fibres, the necessary and sufficient condition
for a function to factor throughp2 is that the Lie derivative of the function in the direction
of any vector field in kerp2∗ vanishes. Hence

0= L ∂
∂t

(
1

ẋ
L
)
= 1

ẋ

∂L
∂t
⇐⇒ ∂L

∂t
= 0 (4.3)

0= Lφ

(
1

ẋ
L
)
= −1

ẋ
L+ 1

ẋ

(
ẋ
∂L
∂ẋ
+ ẏi ∂L

∂ẏi
+ 2ẍ

∂L
∂ẍ
+ 2ÿi

∂L
∂ÿi

)
⇐⇒ ẋ

∂L
∂ẋ
+ ẏi ∂L

∂ẏi
+ 2ẍ

∂L
∂ẍ
+ 2ÿi

∂L
∂ÿi
= L (4.4)

0= Lχ

(
1

ẋ
L
)
= 1

ẋ

(
ẋ
∂L
∂ẍ
+ ẏi ∂L

∂ÿi

)
⇐⇒ ẋ

∂L
∂ẍ
+ ẏi ∂L

∂ÿi
= 0. (4.5)
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As (4.3)–(4.5) coincide with the Zermelo conditions (2.2)–(2.4), respectively, we conclude
that parameter invariance is equivalent to (4.1).

Now, let us suppose that (4.1) is fulfilled. As (4.2) yieldsp∗2(dx) = dx, we deduce
p∗2(L̄dx) = p∗2(L̄)dx = 1

ẋ
Ldx = 1

ẋ
L(dx − ẋdt) + Ldt = Ldt +p∗2(L̄)(dx − ẋdt); i.e.

Ldt factors throughp2 modulo contact forms. Conversely, let us suppose that there
exists a L̄: J 2(R,M) → R such thatp∗2(L̄dx) = Ldt + η, η being a contact form.
Hencep∗2(L̄)dx = p∗2(L̄dx) = Ldt +a0(dx − ẋdt) +a1(dẋ − ẍdt) +∑ b0,i (dyi − ẏidt)
+∑ b1,i (dẏi− ÿidt), and taking components we obtaina1 = b0,i = b1,i = 0, ∀i, a0 = p∗2L̄,
and soL− ẋp∗2(L̄) = 0; i.e. (4.1) holds andL is parameter invariant. �

5. Factoring Poincaŕe–Cartan forms

In section 4 we have seen that the mapp2 allows us to ‘eliminate’ the parameter from
a parameter-invariant Lagrangian, modulo contact forms. For Poincaré–Cartan forms the
result is even better as the Poincaré–Cartan form ofLdt is exactlyp3-projectable onto the
Poincaŕe–Cartan form ofL̄dx.

As is well known (e.g. see [28, theorem 2.1]) ann-form 2(Ldt) on J 2r−1(R,M) (the
Poincaré–Cartan form) is associated to eachrth-order Lagrangian densityLdt onJ r(R,M),
whose local expression is

2(Ldt) = Ldt +
n∑
h=1

r−1∑
α=0

( r−1−α∑
i=0

(−1)i(Dt)
i

(
∂L

∂xh(α+i+1)

))
θhα (5.1)

where θhα = dyh(α) − yh(α+1)dt are the standard contact forms onJ r(R,M) (e.g. see
[28]), andDt is the total derivation operator; i.e. theR-derivationDt :C∞(J k(R,M)) →
C∞(J k+1(R,M)), ∀k ∈ N, given by (Dt(f ))(j

k+1
t σ ) = (d(f ◦ jkσ )/dt)(t), f ∈

C∞(J r(R,M)), whose local expression is

Dt = ∂

∂t
+

n∑
h=1

∞∑
α=0

xh(α+1) ∂

∂xh(α)
.

Theorem 5.1.Let L:O2 → R be a parameter-invariant Lagrangian, and letL̄ be as in
theorem 4.1. The Poincaré–Cartan form ofLdt factors throughp3 onto the Poincaré–Cartan
form of L̄dx, i.e. p∗3(2(L̄dx)) = 2(Ldt).

Proof. The local expression ofp3 agrees with that ofp2 up to order 2, and(yi)′′′ =
(ẋ2...y

i − 3ẋẍÿi + 3ẏi ẍ2 − ẋẏi ...x)/ẋ5. Taking into account that in our caseL is defined on
O2 ⊂ J 2(R,R ×M), recalling the way in which coordinates are induced on this bundle
and the condition (2.2), we obtain,

2(Ldt) = Ldt + ∂L
∂ẋ
(dx − ẋdt)+ ∂L

∂ẏh
(dyh − ẏhdt)−Dt

(
∂L
∂ẍ

)
(dx − ẋdt)

−Dt

(
∂L
∂ÿh

)
(dyh − ẏhdt)+ ∂L

∂ẍ
(dẋ − ẍdt)+ ∂L

∂ÿh
(dẏh − ÿhdt). (5.2)

Application of the total derivativeDt in the formula (2.4) yields

ẍ
∂L
∂ẍ
+ ÿi ∂L

∂ÿi
+ ẋDt

(
∂L
∂ẍ

)
+ ẏiDt

(
∂L
∂ÿi

)
= 0.
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Back substitution of the above expression into (5.2) gives as a result that

2(Ldt) = Ldt + ∂L
∂ẋ
(dx − ẋdt)+ ∂L

∂ẏh
(dyh − ẏhdt)−Dt

(
∂L
∂ẍ

)
dx

−Dt

(
∂L
∂ÿh

)
dyh − ẍ ∂L

∂ẍ
dt − ÿi ∂L

∂ÿi
dt + ∂L

∂ẍ
(dẋ − ẍdt)+ ∂L

∂ÿh
(dẏh − ÿhdt)

(2.3)= ∂L
∂ẋ

dx + ∂L
∂ẏh

dyh + ∂L
∂ẍ

dẋ + ∂L
∂ÿh

dẏh −Dt

(
∂L
∂ẍ

)
dx −Dt

(
∂L
∂ÿh

)
dyh.

(5.3)

The local version of formula (4.1) states (recall thatL does not depend ont , by virtue of
(2.2))

L(x, yi; ẋ, ẏi , ẍ, ÿi) = ẋL̄
(
x, yi; ẏ

i

ẋ
,
ẋÿi − ẏi ẍ

ẋ3

)
(5.4)

and so (with the abuse of notation of writinḡL instead ofp∗3L̄ = p∗2L̄ = L̄ ◦ p2)

∂L
∂ẋ
= L̄− ẏ

h

ẋ

∂L̄
∂(yh)′

+ −2ẋÿh + 3ẏhẍ

ẋ3

∂L̄
∂(yh)′′

∂L
∂ẏh
= ∂L̄
∂(yh)′

− ẍ

ẋ2

∂L̄
∂(yh)′′

∂L
∂ẍ
= − ẏ

h

ẋ2

∂L̄
∂(yh)′′

∂L
∂ÿh
= 1

ẋ

∂L̄
∂(yh)′′

.

(5.5)

Back substitution of these values in (5.3) yields

2(Ldt) = L̄dx − ẏ
h

ẋ

∂L̄
∂(yh)′

dx + −2ẋÿh + 3ẏhẍ

ẋ3

∂L̄
∂(yh)′′

dx + ∂L̄
∂(yh)′

dyh − ẍ

ẋ2

∂L̄
∂(yh)′′

dyh

− ẏ
h

ẋ2

∂L̄
∂(yh)′′

dẋ + 1

ẋ

∂L̄
∂(yh)′′

dẏh −Dt

(
∂L
∂ẍ

)
dx −Dt

(
∂L
∂ÿh

)
dyh. (5.6)

We expand the terms with total derivatives, using (2.2), (5.5) and its derivatives whenever
it is necessary, thus obtaining

Dt

(
∂L
∂ẍ

)
= −(yh)′Dx

(
∂L̄

∂(yh)′′

)
+ 2ẏhẍ − ẋÿh

ẋ3

∂L̄
∂(yh)′′

. (5.7)

Similar calculations lead us to

Dt

(
∂L
∂ÿh

)
= Dx

(
∂L̄

∂(yh)′′

)
− ẍ

ẋ2

∂L̄
∂(yh)′′

. (5.8)

By back substitution of the expressions (5.7) and (5.8) in (5.6), we obtain

2(Ldt) = L̄dx − ẏ
h

ẋ

∂L̄
∂(yh)′

dx + −ẋÿ
h + ẏhẍ
ẋ3

∂L̄
∂(yh)′′

dx + ∂L̄
∂(yh)′

dyh

+
(
− ẏ

h

ẋ2
dẋ + 1

ẋ
dẏh

)
∂L̄

∂(yh)′′
+ (yh)′Dx

(
∂L̄

∂(yh)′′

)
dx −Dx

(
∂L̄

∂(yh)′′

)
dyh
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which yields (taking into account thatp∗3(d(y
i)′) = −(ẏi/ẋ2)dẋ + (1/ẋ)dẏi , and thatL̄ is

written in the place ofp∗2L̄ = p∗3L̄),

2(Ldt) = p∗3L̄p∗3dx + p∗3
∂L̄
∂(yh)′

(p∗3dyh − (yh)′p∗3dx)+ p∗3
∂L̄

∂(yh)′′
(p∗3d(yh)′ − (yh)′′p∗3dx)

−p∗3Dx

(
∂L̄

∂(yh)′′

)
(p∗3dyh − (yh)′p∗3dx)

(5.1)= p∗32(L̄dx).

�

6. The Hamilton–Cartan formulation

As is well known , a curveσ :R→ M is an extremal of the variational problem defined by
an rth order LagrangianLdt if and only if for every vector fieldX ∈ X(J 2r−1(R,M)) we
have

(j2r−1σ)∗(iXd2(Ldt)) = 0. (6.1)

It suffices that (6.1) holds true forpr1-vertical vector fields (cf [11, equation (3.7), 28]).
The above equation is called theHamilton–Cartan equationand it is on the basis of the
Hamiltonian formalism. In fact, we have

(j2r−1σ)∗(iXd2(Ldt)) =
r∑

j=0

(−1)j
dj

dt j

(
∂L
∂xh(j)

◦ j rσ
)
θh0 (X)(j

2r−1σ)dt.

Equation (6.1) and theorem 5.1 lead us to the following characterization of extremals
of a second-order parameter-invariant Lagrangian.

Theorem 6.1.Let L be a second-order parameter-invariant Lagrangian onp̃r1 : R × (R ×
M) → R. If (f, g):R → R × M is an extremal ofLdt such thatj2(f, g) ∈ O2, then
h = g◦f −1:R→ M is an extremal ofL̄dx. Conversely, ifh:R→ M is an extremal ofL̄dx,
then for every local diffeomorphismf :R→ R the curve(f, h ◦ f ) is an extremal ofLdt .

Proof. Let h:R → M be a curve onM. As we showed in lemma 3.1,p3 is surjective,
the fibre overj3h being {j3(f, h ◦ f ) : ∀f local diffeomorphism}. Using this fact and
theorem 5.1 for everyX ∈ X(J 3(R,R×M)) we obtain

(j3h)∗i(p3)∗Xd2(L̄dx) = (j3(f, h ◦ f ))∗p∗3i(p3)∗Xd2(L̄dx)

= (j3(f, h ◦ f ))∗iXd2(Ldt).

Taking into account the surjectivity ofp3∗ (again by lemma 3.1), the above formula proves
thath is an extremal ofL̄dx if and only if (f, h◦f ) is an extremal ofLdt . As every(f, g)
such thatj2(f, g) ∈ O2 can be written as(f, (g ◦ f −1) ◦ f ), the proof is complete. �

Remark 6.1.The above theorem means that the extremals of a second-order parameter-
invariant Lagrangian densityLdt whose velocity has a nowhere vanishingx-component
can be obtained from the extremals of the non-parametric LagrangianL̄dx, by composing
them with an arbitrary local diffeomorphism of the real line.
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7. Infinitesimal symmetries

Let L: J r(R,M) → R be an rth order Lagrangian. Apr1-projectable vector field
X ∈ X(R × M) is said to be aninfinitesimal symmetryof Ldt if L X(r) (Ldt) = 0.
In such a case, Noether’s theorem [17, 18, 22, 23] states that the functionfX =
iX(2r−1)2(Ldt): J 2r−1(R,M) → R is constant on the extremals of the variational problem
associated with the LagrangianL, whereX(2r−1) is the prolongation of the vector field
X to J 2r−1(R,M) by means of infinitesimal contact transformations (cf [15, 20]). The
function fX is called theNoether invariantassociated withX. Let us consider a more
general situation and define ageneralized infinitesimal symmetryof Ldt as a vector field
X ∈ X(J 0(R,M)) = X(R×M) (not necessarilypr1-projectable) such that LX(r) (Ldt) is a
contact form; i.e. it vanishes on everyr-jet of curve onM (cf [24, definition 5.25]).

Remark 7.1.If X ∈ X(R × M) is a generalized infinitesimal symmetry ofLdt , then fX
is constant on the extremals ofLdt , i.e. generalized symmetries also produce Noether
invariants.

Proof. From the hypothesis we have LX(r) (Ldt) = θ , where θ is a contact form. As
2(Ldt) = Ldt+ contact forms, andX(2r−1) is an infinitesimal contact transformation,
we obtain LX(2r−1)2(Ldt) = η, η being a contact form. Thus,η = iX(2r−1)d2(Ldt) +
diX(2r−1)2(Ldt) = iX(2r−1)d2(Ldt) + dfX. If σ :R → M is an extremal ofLdt , then
(j2r−1σ)∗iX(2r−1)d2(Ldt)+d(fX ◦j2r−1σ) = (j2r−1σ)∗η = 0, asη is a contact form; but the
first summand of the above expression vanishes by virtue of the Hamilton equation (6.1),
so we conclude thatfX ◦ j2r−1σ is constant; i.e.fX is constant on extremals. �

To prove the results in this section, we shall make use of the following lemma.

Lemma 7.1.For X ∈ X(R × M), let X(r) and X[r] be the prolongations ofX by
infinitesimal contact transformations toJ r(R,R×M) and toJ r(R,M), respectively. Then
X[r] = pr∗(X(r)).

Proof. Let p̃r1 and p̃r2 be the canonical projections ofR× (R×M) ontoR andR×M,
respectively. IfX is the infinitesimal generator of a one-parameter group of transformations
(8s, φs) of the fibrationpr1:R ×M → R, X[r] will be the infinitesimal generator of the
one-parameter group8[r]

s of J r(R,M), given by

8[r]
s (j

r
t h) = j rφs(t)(pr2 ◦8s ◦ (1R, h) ◦ φ−s).

Moreover,X can be identified to the vector field̃X = (0, X) ∈ X(R × (R × M)) (as
a matter of fact,X̃ is p̃r1-vertical and p̃r2-projectable, andX is its projection onto
R × M by ˜pr2). X̃ is the infinitesimal generator of the one-parameter group(8̃s, 1R)
of the fibration p̃r1:R × (R × M) → R, where 8̃s = (1R,8s), and X(r) is the
generator of the one-parameter group8(r)

s of J r(R× (R×M)), given by8(r)
s (j

r
t (f, g)) =

j rt ( ˜pr2 ◦ 8̃s ◦ (1R, (f, g)) ◦ 1R) = j rt (8s(f, g)) = j rt (φs ◦ f, pr2 ◦ 8s ◦ (f, g)). Hence,

pr ◦ 8(r)
s (j

r
t (f, g)) = 8[r]

s

(
j rf (t)(g ◦ f −1)

)
= 8[r]

s ◦ pr
(
j rt (f, g)

)
, ∀j rt (f, g) ∈ U , and we

concludepr ◦8(r)
s = 8[r]

s ◦ pr ; i.e. pr∗X(r) = X[r] . �

Lemma 7.1 allows us to prove that ifL is a second-order parameter-invariant Lagrangian
on R ×M, a vector field onR ×M is an infinitesimal symmetry of2(Ldt) (viewed as
the projection of ap̃r1-vertical, p̃r2-projectable field onR × (R × M)) if and only if it
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is a generalized infinitesimal symmetry of2(L̄dx) with vanishing associated contact form.
More precisely,

Theorem 7.2.Let L:O2→ R be a parameter-invariant Lagrangian, and letX ∈ X(R×M).
Then, LX(3)2(Ldt) = 0 if and only if LX[3]2(L̄dx) = 0.

Proof. Theorem 5.1 and lemma 7.1 yield

LX(3)2(Ldt) = LX(3)p
∗
32(L̄dx) = p∗3Lp3∗X(3)2(L̄dx) = p∗3LX[3]2(L̄dx) (7.1)

and the result follows asp∗3 is injective (or, equivalently,p3∗, is surjective, recalling
lemma 3.1). �

The next theorem provides us with a relationship between some infinitesimal symmetries
of a parameter-invariant LagrangianL and the generalized infinitesimal symmetries of its
non-parametric Lagrangian̄L. Again, this result is weaker than the one that we have just
obtained for symmetries of the Poincaré–Cartan form.

Theorem 7.3.Let L:O2→ R be a parameter-invariant Lagrangian andL̄ as in theorem 4.1.
We identify eachp̃r2-projectable vector fieldX ∈ X(R×M) to thep̃r1-vertical vector field
(0, X) ∈ X(R× R×M). Then,X is an infinitesimal symmetry ofLdt if and only if X is
a generalized infinitesimal symmetry ofL̄dx.

Proof. Let (x, yi) be local coordinates inR × M, and let us write the fieldX as
X = α(x, yi)(∂/∂x)+ βi(x, yi)(∂/∂yi). Then (see [20]),

X(2) = α ∂
∂x
+ βi ∂

∂yi
+ α1

∂

∂ẋ
+ βi1

∂

∂ẏi
+ α2

∂

∂ẍ
+ βi2

∂

∂ÿi
(7.2)

where

α1 = ∂α

∂x
ẋ + ∂α

∂yj
ẏj (7.3)

(the other coefficients will not be used in the proof). We begin with the direct implication.
From the hypothesis, LX(2) (Ldt) = (X(2)(L))dt = 0. We thus obtain

p∗2LX[2] (L̄dx) = p∗2Lp2∗X(2) (L̄dx) = p∗2ip2∗X(2)d(L̄dx)+ p∗2dip2∗X(2) (L̄dx)

= iX(2)d(p∗2(L̄dx))+ diX(2)p
∗
2(L̄dx)

(4.1)= iX(2)d
(

1

ẋ
Ldx

)
+ diX(2)

(
1

ẋ
Ldx

)
= iX(2)

(
− 1

ẋ2
Ldẋ ∧ dx + 1

ẋ
dL ∧ dx

)
+ d

(
1

ẋ
LiX(2) (dx)

)
(7.2)= − 1

ẋ2
Lα1dx + 1

ẋ2
Lαdẋ + 1

ẋ
iX(2) (dL)dx −

1

ẋ
αdL

− 1

ẋ2
Lαdẋ + 1

ẋ
αdL+ 1

ẋ
Ldα

= 1

ẋ

(
X(2)(L)dx + Ldα − 1

ẋ
Lα1dx

)
(7.3)= 1

ẋ
L
[
∂α

∂x
dx + ∂α

∂yi
dyi − 1

ẋ

(
∂α

∂x
ẋ + ∂α

∂yi
ẏi
)

dx

]
= 1

ẋ
L ∂α
∂yi

(
dyi − ẏ

i

ẋ
dx

)
= p∗2

(
L̄ ∂α
∂yi

(dyi − (yi)′dx)
)
.
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Asp∗2 is injective (or, equivalently,p2∗ is surjective; see lemma 3.1) we conclude LX[2] (L̄dx)
= L̄(∂α/∂yi)(dyi−(yi)′dx); i.e. it is a contact form, and soX is a generalized infinitesimal
symmetry ofL̄dx.

Conversely, let us suppose that LX[2] (L̄dx) is a contact form. As2(φ) is congruent
with φ modulo contact forms for every densityφ (see (5.1)), we have that2(LX[2] (L̄dx)) is
a contact form. We recall that the infinitesimal functoriality of Poincaré–Cartan form (e.g.
see [21, theorem 2]) means LX(3)2(Ldt) = 2(LX(2) (Ldt)). Using this fact and the formula
(7.1) we obtain

p∗32(LX[2] (L̄dx)) = p∗3LX[3]2(L̄dx) = LX(3)2(Ldt)

= 2(LX(2) (Ldt))
(2.2)= 2(X(2)(L)dt)

(5.1)= X(2)(L)dt + contact forms

and from the local expression ofp3,

p∗3(dy
i − (yi)′dx) = dyi − ẏ

i

ẋ
dx = (dyi − ẏidt)− ẏ

i

ẋ
(dx − ẋdt)

p∗3(d(y
i)′ − (yi)′′dx) = − ẏ

i

ẋ2
(dẋ − ẍdt)+ 1

ẋ
(dẏi − ÿidt)− ẋÿ

i − ẏi ẍ
ẋ3

(dx − ẋdt)

p∗3(d(y
i)′′ − (yi)′′′dx) = −2ẋÿi + 3ẏi ẍ

ẋ4
(dẋ − ẍdt)+ ẍ

ẋ3
(dẏi − ÿidt)− ẏi

ẋ3
(dẍ − ...

xdt)

+ 1

ẋ2
(dÿi − ...

y
i
dt)− ẋ

2...y
i − 3ẋẍÿi + 3ẏi ẍ2− ẋẏi ...x

ẋ5
(dx − ẋdt)

i.e. p∗3 maps contact forms onto contact forms, and so we have thatX(2)(L)dt is a contact
form. HenceX(2)(L) = 0; i.e. LX(2) (Ldt) = 0. �

This theorem shows us howp2 projects some infinitesimal symmetries of a second-
order parameter-invariant Lagrangian onto the generalized infinitesimal symmetries of its
non-parametric Lagrangian. Then, the next consequence of lemma 7.1 and theorem 5.1 is
thatp3 maps the Noether invariants onto the corresponding Noether invariants.

Corollary 7.4. Let L:O2 → J 2(R,M) be a parameter-invariant Lagrangian, letL̄ be the
corresponding non-parametric Lagrangian and letX be a vector field onX(R × M).
Let fX̃: J 3(R,R × M) → R, fX: J 3(R,M) → R be the functionsfX̃ = iX(3)2(Ldt),
fX = iX[3]2(L̄dx), respectively. Then,fX̃|O3 = fX ◦ p3.

Remark 7.2.The vector field∂/∂t is an infinitesimal symmetry for every second-order
parameter-invariant Lagrangian, by (2.2). We could thus expect to obtain some information
from its Noether invariant, theHamiltonian. In the case that we ‘eliminated’ the parameter,
this information would be lost, aspr∗(∂/∂t) = 0. In fact, no useful information can be
obtained from the Hamiltonian of a parameter-invariant variational problem, as it vanishes
identically.

Proof. If L(t, xk; ẋk, ẍk) is a second-order parameter-invariant Lagrangian, the Hamiltonian
is H = −i∂/∂t2(Ldt) and (2.2), (5.1) yield

H = −L+ ∂L
∂ẋk

ẋk −Dt

(
∂L
∂ẍk

)
ẋk + ∂L

∂ẍk
ẍk. (7.4)
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Applying the total derivation in (2.4), we obtainDt(∂L/∂ẍk)ẋk + ∂L/ẍk = 0, and finally,
by back substitution in (7.4), we have

H = −L+ ∂L
∂ẋk

ẋk + 2
∂L
∂ẍk

ẍk
(2.3)= 0.

�

8. The Hessian metric: regularity

Let q:N → M be an affine bundle modelled over the vector bundlep:V → M and let
f :N → R be a differentiable function. There is a canonical isomorphismq∗V ∼= kerq∗
given by the map(y, v) 7→ Xy,v, where

Xy,v(f ) = lim
t→0

f (tv + y)− f (y)
t

f ∈ C∞(N)
is the directional derivative off at y ∈ N , in the direction ofv ∈ Vq(y) (see [9]). For
x0 ∈ M, let fx0:Vx0 × Nx0 → R be the function given byfx0(v, y) = Xy,v(f ), ∀v ∈ Vx0,
∀y ∈ Nx0. For eachy0 ∈ Nx0, we define Hessy0(f ):Vx0 × Vx0 → R as

Hessy0(f )(v,w) = Xy0,w(fx0(v, ·)) ∀v,w ∈ Vx0

wherefx0(v, ·):Nx0 → R is the functionfx0(v, ·)(y) = fx0(v, y). Note that Hessy0(f ) is
well defined, asXy0,v is a tangent vector to the fibreNx0. For more details, see [11]. Let
us calculate the local expression of Hessy0(f ). Let (U ; x1, . . . , xn) be a coordinate domain
in M such thatV andN trivialize onU , (φ1, . . . , φr) a basis of sections of0(U, V ), and
s:U → N a section ofq such thats(x0) = y0. Then, (xj , s, φi) induces a coordinate
system(x1, . . . , xn; y1, . . . , yr) on q−1(U) as follows: (

∑r
i=1 y

i(y)φi(x)) + s(x) = y,
∀y ∈ q−1(U). In these coordinates, we obtainfx0(v, y) =

∑r
i=1(∂f/∂y

i)(y)vi , v =∑r
i=1 v

iφi(x0), and Hessy0(f )(v,w) =
∑r

i,j=1(∂
2f/∂yi∂yj )(y0)viwj . Therefore Hessy0(f )

is a symmetric bilinear form; so it defines a tensor Hessy0(f ) ∈ S2V ∗x0
. Using the affine

structure ofJ r(R,M) (remark 3.1), we can construct the tensor Hess(L) for a Lagrangian
L: J 2(R,M)→ R, thus obtaining a metric Hessj2

t0
σ (L) ∈ S2(S2(TR)t0⊗J 1

t0
(R,M) (T

∗M)σ(t0)),
which is known as theHessian metricof L, and whose local expression is

Hess(L) =
n∑

i,j=1

∂2L
∂ẍi∂ẍj

∂

∂t
⊗ ∂

∂t
⊗ dxi ⊗ ∂

∂t
⊗ ∂

∂t
⊗ dxj . (8.1)

Now considerp2:O2 → J 2(R,M), which is a morphism of affine bundles overp1, (see
remark 3.1) and therefore induces a vector bundle morphism

p2: S2T ∗R⊗J 1(R,R×M) T (R×M)→ S2T ∗R⊗J 1(R,M) TM

as follows: ifh is the only element ofS2T ∗R⊗T (R×M) such thatj2
t (f, g) = h+j2

t (f̄ , ḡ),
with j1

t (f, g) = j1
t (f̄ , ḡ), then p2(h) is the only element inS2T ∗R ⊗ TM such that

p2(j
2
t (f, g)) = p2(h) + p2(j

2
t (f̄ , ḡ)). In local coordinates, if(t, x, yi, ẋ, ẏi;h0, hi)

represents the element

h = h0(dt ⊗ dt ⊗ (∂/∂x))j1
t (f,g)
+ hi(dt ⊗ dt ⊗ (∂/∂yi))j1

t (f,g)
16 i 6 n

j1
t (f, g) being given by(t, x, yi, ẋ, ẏi), then

p2(h) = hiẋ(j1
t (f, g))− h0ẏi (j1

t (f, g))

(ẋ(j1
t (f, g)))

3
(dt ⊗ dt ⊗ (∂/∂yi))j1

f (t)(g◦f −1).

Accordingly, the coordinates ofp2(h) are(x, yi, (yi)′ = ẏ/ẋ; (hi ẋ − h0ẏi )/ẋ3).
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Theorem 8.1.Let L:O2 → R be a parameter-invariant Lagrangian, and letL̄ be the non-
parametric Lagrangian associated withL. Then,

Hessj2
t0
(f,g)(L)(h, h̄) =

df

dt
(t0)Hessj2

f (t0)
(g◦f −1)(L̄)(p2(h),p2(h̄))

for all h, h̄ ∈ (S2T ∗R⊗ T (R×M))j1
t0
(f,g).

Proof. From the local expression ofp2 we obtain

Hess(L̄)(p2(h
0, hi),p2(h̄0, h̄i)) =

n∑
i,j=1

∂2L̄
∂(yi)′′∂(yj )′′

1

ẋ4
hih̄j

+
n∑
j=1

( n∑
i=1

∂2L̄
∂(yi)′′∂(yj )′′

−ẏi
ẋ5

)
h0h̄j +

n∑
i=1

( n∑
j=1

∂2L̄
∂(yi)′′∂(yj )′′

−ẏj
ẋ5

)
hih̄0

+
( n∑
i,j=1

∂2L̄
∂(yi)′′∂(yj )′′

ẏi ẏj

ẋ6

)
h0h̄0. (8.2)

The second derivatives ofL with respect to(ẍ, ÿi) in formula (5.4) are

∂2L̄
∂(yi)′′∂(yj )′′

1

ẋ3
= ∂2L
∂ÿi∂ÿj

∑
i

∂2L̄
∂(yi)′′∂(yj )′′

−ẏi
ẋ4

= ∂2L
∂ẍ∂ÿi

∑
i,j

∂2L̄
∂(yi)′′∂(yj )′′

ẏi ẏj

ẋ5
= ∂2L
∂ẍ2

. (8.3)

Back substitution in (8.2) yields

(Hess(L̄))(p2(h
0, hi),p2(h̄0, h̄i)) = 1

ẋ
Hess(L)((h0, hi), (h̄0, h̄i)).

�

Remark 8.1.We recall that a LagrangianL: J 2(R,M) → R is said to beregular if the
Hessian metric Hess(L) is non-degenerate. The regularity of a Lagrangian allows us to
perform a change of coordinates between the variables(t; xk, ẋk, ẍk, ...xk) and the canonical
variables(t; xk, ẋk;pk, ṗk), where thep’s are thegeneralized momenta(e.g. see [7]), also
known asJacobi–Ostrogradski momenta:

pk = ∂L
∂ẋk
−Dt

(
∂L
∂ẍk

)
ṗk = ∂L

∂ẍk
. (8.4)

Proof. The Jacobian of the coordinate change is

∂(t, xk, ẋk, pk, ṗk)

∂(t, xk, ẋk, ẍk,
...
x
k
)
= ∂(pk, ṗk)

∂(ẍk,
...
x
k
)
.

As

pk = ∂L
∂ẋk
− ∂2L
∂t∂ẍk

− ẋi ∂2L
∂xi∂ẍk

− ẍi ∂2L
∂ẋi∂ẍk

− ...
x
i ∂2L
∂ẍi∂ẍk
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we have that the above determinant is

det


∂pk

∂ẍi

∂pk

∂
...
x
i

∂ṗk

∂ẍi

∂ṗk

∂
...
x
i

 = det

 ∗ − ∂2L
∂ẍi ẍk

∂2L
∂ẍi ẍk

0


which is non-zero if and only if det(∂2L/∂ẍi ẍk) 6= 0. �

Remark 8.2.Parameter-invariant Lagrangians of second order are not regular.

Proof. The condition on Hess(L) of being non-degenerate can be written locally as
det(∂2L/∂ẍi∂ẍj ) 6= 0. Derivation with respect töxi in (2.4) yieldsẋk(∂2L/∂ẍi∂ẍk) = 0,
and so we obtain a vanishing linear combination of the columns (or rows) of the matrix
(∂2L/∂ẍi∂ẍj ) which is non-trivial at each point where a componentẋi 6= 0. �

The projectionp2, however, may carry a parameter-invariant (and thus non-regular)
LagrangianL over a regular Lagrangian̄L.

Theorem 8.2.Let L:O2 → R be a parameter-invariant Lagrangian, and letL̄ be the non-
parametric Lagrangian associated withL. Then,L̄ is regular if and only if the rank of the
Hessian ofL is n = dimM = dim(R×M)− 1.

Proof. The local expression of Hess(L) is given by the matrix
∂2L
∂ẍ2

∂2L
∂ẍÿ1

. . . ∂2L
∂ẍÿn

∂2L
∂ẍÿ1

∂2L
∂ÿ1

2 . . . ∂2L
∂ÿ1ÿn

...
...

. . .
...

∂2L
∂ẍÿn

∂2L
∂ÿ1ÿn

. . . ∂2L
∂ÿn

2

 . (8.5)

Using the formulae (8.3), we obtain

∂2L
∂ẍ2
=

n∑
i,j=1

ẏi ẏj

ẋ5

∂2L̄
∂(yi)′′(yj )′′

= −
n∑
i=1

ẏi ẋ
∂2L
∂ẍÿi

∂2L
∂ẍÿj

=
n∑
i=1

ẏi

ẋ4

∂2L̄
∂(yi)′′(yj )′′

= −
n∑
i=1

ẏi ẋ
∂2L
∂ÿi ÿj

(8.6)

i.e. the first row of the matrix (8.5) is a linear combination of the other rows, and also the
first column of the above matrix is a linear combination of the other columns. So the rank
of (8.5) is the same as the rank of

∂2L
∂ÿ1

2 . . . ∂2L
∂ÿ1ÿn

...
. . .

...
∂2L
∂ÿ1ÿn

. . . ∂2L
∂ÿn

2

 .
From (8.3) it follows that the above matrix represents the Hessian metric ofL multiplied
by the scalar 1/ẋ3 (recall ẋ 6= 0 as we are inO2). Hence, the rank of Hess(L) equals the
rank of Hess(L̄). �
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Remark 8.3.The importance of this result lies in the fact that for a regular Lagrangian
L: J 2(R,M)→ R, the equation

(γ3)
∗iXd2(Ldt) = 0 ∀X ∈ X(J 3(R,M)) (8.7)

(whereγ3 is a section ofJ 3(R,M)) is equivalent to the existence of an extremal ofLdt ,
σ , such thatγ3 = j3σ (cf [11, theorem 3.1, 28]).

Hence, in order to obtain the extremals of a regular second-order Lagrangian, it suffices
to solve a Pffafian system in the 3-jet bundle. If the Lagrangian is parameter invariant,
it is not regular (see remark 8.2), and we cannot apply this method. Nevertheless, if the
rank of the Hessian ofL is equal to dim(R ×M) − 1, the non-parametric Lagrangian is
regular and we can obtain its extremals by solving the exterior differential system given
by (8.7). Then, we transport these extremals toR × M by reparametrizing them, as we
saw in remark 6.1. In this way we obtain a Hamiltonian formulation for second-order
parameter-invariant variational problems whose Hessian metric is of maximal rank.

9. An example

As an example of application, we calculate the Hamilton equations to the non-parametric
version of the squared-curvature Lagrangian inR2. We consider the LagrangianLdt = κ2

σds,
whereκσ is the curvature ofσ(t) = (x(t), y(t)) ands is the arc-length parameter. We have

κσ = ẋÿ − ẍẏ
(ẋ2+ ẏ2)3/2

ds = (ẋ2+ ẏ2)1/2dt Ldt = (ẋÿ − ẍẏ)2
(ẋ2+ ẏ2)5/2

dt.

As a simple calculation shows,L satisfies the Zermelo conditions and hence it is parameter-
invariant. After factorization throughp2, we obtain the non-parametric Lagrangian, whose
expression is (cf [19, equation (3.2)]):

L̄dx = y ′′2

(1+ y ′2)5/2 dx

and accordingly, it is obviously regular (∂2L̄/∂y ′′2 6= 0).
Applying the formulae (8.4), we obtain the generalized momenta

p = 5y ′y ′′2(1+ y ′2)−7/2− 2y ′′′(1+ y ′2)−5/2

= (1+ y ′2)−7/2(5y ′y ′′2− 2y ′′′(1+ y ′2))
p′ = 2y ′′(1+ y ′2)−5/2.

Using (5.1), we calculate the Poincaré–Cartan form forL̄,

2(L̄dx) = y ′′2(1+ y ′2)−5/2dx + 2y ′′(1+ y ′2)−5/2(dy ′ − y ′′dx)
+ (5y ′y ′′2(1+ y ′2)−7/2− 2y ′′′(1+ y ′2)−5/2

)
(dy − y ′dx)

and finally, the Hamiltonian

H = −i ∂
∂x
2(L̄dx)

= − y ′′2(1+ y ′2)−5/2+ 2y ′′2(1+ y ′2)−5/2+ 5y ′2y ′′2(1+ y ′2)−7/2

−2y ′y ′′′(1+ y ′2)−5/2

= y ′′2(1+ y ′2)−5/2+ y ′(1+ y ′2)−7/2(5y ′y ′′2− 2y ′′′(1+ y ′2)).
Making the change of coordinates to the canonical variables, we obtain

H = 1
2y
′′p′ + y ′p = 1

4p
′2(1+ y ′2)5/2+ y ′p.
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In this way, the Hamilton equations (see [7]),

dy

dx
= ∂H

∂p

dy ′

dx
= ∂H

∂p′
dp

dx
= −∂H

∂y

dp′

dx
= −∂H

∂y ′
are

dy

dx
= y ′ (9.1)

dy ′

dx
= 1

2p
′(1+ y ′2)5/2 (9.2)

dp

dx
= 0 (9.3)

dp′

dx
= −p − 5

4y
′p′2(1+ y ′2)3/2. (9.4)

Equation (9.1) says nothing but that the solution is the jet of a curve, equation (9.3) states
thatp is constant along extremals, and the two remaining equations form a system of non-
linear ordinary differential equations, whose solutions are the extremals of the variational
problem associated with the squared-curvature Lagrangian (cf [6, section 3a]).

As L̄ is trivially invariant with respect to the vector field∂/∂x, the Hamiltonian must
be constant along extremals, as follows from Noether’s theorem. If we writep′ in terms
of y ′ using equation (9.2) and then substitute it in the expression of the Hamiltonian, we
obtain

H = (dy ′/dx)2

(1+ y ′2)5/2 + y
′p or

(
dy ′

dx

)2

= (H − py ′)(1+ y ′2)5/2

whereH andp are constants. In this way, we have reduced the equations for the extremals
of L̄ to a first-order nonlinear ordinary differential equation.
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